

369 East Park Drive Harrisburg, PA 17111 (717) 564-1121 www.hrg-inc.com

TMDL STRATEGY FOR CHRISTINA RIVER BASIN WEST GOSHEN TOWNSHIP, CHESTER COUNTY, PENNSYLVANIA

TABLE OF CONTENTS

- 1.0 Executive Summary
- 2.0 Introduction

3.0 Brandywine Creek Watershed TMDL Strategy

- i. TMDL Report Title
- ii. Watershed Name & HUC
- iii. Allocated Loadings and Reductions
- iv. Municipalities in HUC Subject to TMDL
- v. Counties in HUC Subject to TMDL
- vi. Determination of Baseline Load
- vii. Pollutant Load Reduction Required & Reduction Strategy
- viii. Proposed BMPs and Control Measures
- ix. BMP Modeling Results
- x. Implementation Schedule
- xi. Effectiveness Evaluation
- 4.0 Summary of Findings
- 5.0 References

Appendices

- A. Stream Classification Maps
- B. Detention Basin Inventory
- C. Mapshed Model Input Data and Results
- D. Stream Project Location Maps
- E. Detention Basin Retrofit Location Maps
- F. Bioswale Project Location Maps
- G. West Goshen Township MS4 Stormwater Facility Maps
- H. Public Comments and Responses

Tables


- 1. West Goshen MS4 Sediment Load Allocations (WLA) and Required Reductions
- 2. Municipalities in HUC 2040202
- 3. Surface Waters Receiving Stormwater Discharge from West Goshen Township MS4
- 4. West Goshen Township MS4 Outfall Identification Numbers
- 5. West Goshen MS4 Baseline Sediment Load & Proposed Sediment Load Reduction
- 6. Proposed Streambank Stabilization and Buffer Restoration BMPs Summary
- 7. Proposed Street Sweeping BMP Summary
- 8. Proposed Detention Basin Retrofit BMPs Summary
- 9. Proposed Bioswale BMPs Summary
- 10. Summary of MapShed Modeling Results

1.0 EXECUTIVE SUMMARY

A report published by the Unites States Environmental Protection Agency (US EPA) has established total maximum daily loads (TMDL) for municipalities with a municipal separate stormwater system (MS4) discharge permit within the Christina River Basin in Pennsylvania, Delaware, and Maryland.

West Goshen Township is assigned pollutant reduction goal of 60.87% for sediment. Based on this proposed MS4 TMDL Strategy, the sediment loading is anticipated to be reduced by approximately 61% with the implementation of effective best management practices (BMPs), namely detention basin retrofits, stream bank stabilization, riparian buffer restoration, vegetated swale installation, and street sweeping. Iterative implementation of the proposed BMPs is set to begin upon approval and continue through the next four permit cycles.

I hereby certify that, to the best of my knowledge, the stormwater management best management practices described herein are designed in conformance with the conditions of the Notice of Intent for Coverage Under NPDES General Permit for Stormwater Discharges (PAG-13) from Small Municipal Separate Storm Sewer Systems (MS4s) and the Pennsylvania Stormwater Best Management Practices Manual (Document No. 363-0300-002), as amended.

2.0 INTRODUCTION

The following Total Maximum Daily Load (TMDL) Strategy addresses how the Township of West Goshen intends to meet the pollutant reduction requirements listed in the TMDL report dated September, 2006 entitled, "Total Maximum Daily Loads for Bacteria and Sediment in the Christina River Basin, Pennsylvania, Delaware, and Maryland" as established by the United States Environmental Protection Agency, Region III.

Located in eastern Chester County, Pennsylvania; West Goshen Township is an MS4 community (PAI 130532) currently in its second permit term. The entire township is classified as an Urbanized Area (UA) according to the United States Census Bureau's 2000 census. The western portion of the township lies within the Brandywine Creek Watershed and the central and eastern portions comprise part of the Chester Creek Watershed. The above mentioned Brandywine Creek Watershed is a sub-watershed of the Christina River Basin, encompassing approximately 2,362 acres in the western region of West Goshen Township. Many of the stream segments within the Brandywine Creek Watershed have been classified by the Pennsylvania Department of Environmental Protection as impaired, including those located within West Goshen Township. The EPA's Christina River Basin TMDL Report establishes a sediment TMDL for the Brandywine Creek Watershed and provides a sediment Waste Load Allocation (WLA) to each of the MS4s in the watershed. The table below lists West Goshen's current and allocated sediment loads, as well as the reduction requirement as described by the Christina River Basin TMDL Report. The EPA established these values using their Hydrologic Simulation Program – FORTRAN (HSPF).

3.0 BRANDYWINE CREEK WATERSHED TMDL STRATEGY

The following strategy provides the information requested in the Authorization Form – Part C, items a, b, and c, as applies to the content of a complete TMDL Strategy. Tables 1, 2, 3, and 4 provide information in tabular form as requested in the guidance document.

i. TMDL Report Title:

Total Maximum Daily Loads for Bacteria and Sediment in the Christina River Basin, Pennsylvania, Delaware, and Maryland

Established by United States Environmental Protection Agency Region III, September 2006

ii. Watershed Name & Hydrologic Unit Code (HUC):

Brandywine Creek Watershed HUC 2040205

iii. Allocated Loadings and Reductions:

Table 1: West Goshen MS4 Sediment Loads and Required Reduction*					
MS4 PermitteeCurrent Sediment LoadAllocated Sediment LoadReduction Requirement(ton/yr)(ton/yr)(ton/yr)					
West Goshen Twp.	461.32	180.51	60.87%		

*Current sediment load as listed in TMDL Report. See section vi. for recalculation of baseline load.

Sable 2. Municipalities in HUC 2040205 Municipality	County
Avondale Borough	Chester
Birmingham Township	Chester
Caln Township	Chester
Chadds Ford Township	Delaware
City of Coatesville	Chester
Downingtown Borough	Chester
East Bradford Township	Chester
East Brandywine Township	Chester
Est Caln Township	Chester
East Fallowfield Township	Chester
East Marlborough Township	Chester
Franklin Township	Chester
Honey Brook Township	Chester
Kennett Square Borough	Chester
Kennett Township	Chester
London Britain Township	Chester
London Grove Township	Chester
New Garden Township	Chester
New London Township	Chester
Penn Township	Chester
Pennsbury Township	Chester
Pocopson Township	Chester
Sadsbury Township	Chester
South Coatesville Borough	Chester
Thornbury Township	Chester
Upper Uwchlan Township	Chester
Uwchlan Township	Chester
Valley Township	Chester
Wallace Township	Chester
West Bradford Township	Chester
West Brandywine Township	Chester
West Caln Township	Chester
West Chester Borough	Chester
West Goshen Township	Chester
West Grove Township	Chester
West Whiteland Township	Chester
City of Wilmington	New Castle

iv. Municipalities in HUC Subject to TMDL:

Table 2 (continued)	
Elsmere, DE	New Castle
Newport, DE	New Castle
City of Newark, DE	New Castle
New Castle County, DE	New Castle

v. Counties Subject to TMDL:

Chester, Delaware, and New Castle Counties are subject to the Christina River Basin TMDL. See Table 2 above.

Table 3. Surface Waters Receiving Stormwater Discharge from West Goshen Township MS4**					
Stream Name	Designated Use	Impaired	TMDL		
Plum Run	WWF-MF	Yes	Yes		
UNT to Plum Run	WWF-MF	Yes	Yes		
Taylor Run	TSF-MF	Yes	Yes		
UNT to Taylor Run	TSF-MF	Yes	Yes		
UNT to Taylor Run	TSF-MF	Yes	Yes		
UNT to Taylor Run	TSF-MF	Yes	Yes		
UNT to Taylor Run	TSF-MF	Yes	Yes		
UNT to Taylor Run	TSF-MF	Yes	Yes		
Broad Run	HQ-MF	Yes	Yes		

Summary of Surface Waters with TMDLs:

**Stream classification maps are located in Appendix A.

West Goshen Township MS4 Outfalls Located in Brandywine Creek Watershed:

 Table 4: West Goshen Township MS4 Outfall Identification Numbers (see Stormwater Facility

 Map in Appendix G for outfall locations)

map m rsp	pendix G for 0	utiun locutions)			
6	13	18	25	26	28	29
40	41	42	43	44	45	46
47	48	50	58	59	77	78
79	81	82	83	85	87	90
91	92	93	94	95	101	102
105	106	108	115	116	117	118
119	124	134	135	195	196	

vi. Determination of Baseline Load

Baseline sediment loading for the Brandywine Creek Watershed was determined using the MapShed modeling software. MapShed is a "GIS-based watershed modeling tool that uses hydrology, land cover, soils, topography, weather, pollutant discharges, and other critical environmental data to model sediment and nutrient transport within a watershed."¹ All GIS data used to create the Brandywine Creek Watershed sediment baseline loading model was sourced from the MapShed Download web site.² The baseline model was created using existing land use data without the addition of proposed control

measures or BMPs. Only Brandywine Creek Watershed sub-basins B14 and B15 were included in the MapShed model, as sub-basin B29 was not included in MS4 waste load allocations table (Table 4-7) of the Christina River Basin TMDL Report. A sediment adjustment factor of 0.4 was used to calibrate the model and bring baseline sediment loads to a level consistent with those reported in the Christina River Basin TMDL Report. Existing detention basins located within the Township limits of the Brandywine Creek Watershed were added to the baseline model at an assumed average depth of three feet. This was done to provide a model that represented the current hydrologic conditions of West Goshen Township. A list of all detentions basins included in the baseline MapShed model can be found in Appendix B. Using MapShed's Urbanized Area Viewer, the baseline sediment load for West Goshen Township was determined to be 470 tons per year. This is an increase of approximately nine tons per year from the baseline sediment load listed in the Christina River Basin TMDL Report. See Appendix C for all MapShed modeling results.

vii. Pollutant Load Reduction Required & Reduction Strategy

West Goshen Township has developed a strategy to achieve their required reduction of 60.87% of the current sediment load being discharged to the Brandywine Creek Watershed through the implementation of stormwater detention basin retrofits, streambank stabilization, riparian buffer restoration, street sweeping, and vegetated swales with subsurface infiltration capabilities. The introduction of these Best Management Practices (BMPs) to the Township's portion of the Brandywine Creek Watershed will provide water quality benefits to surface runoff prior to it reaching receiving waters; and in the case of detention basin retrofits, reduce the volume of stormwater being discharged to the stream. The Township Engineer and staff collaborated with their engineering consultant Herbert, Rowland & Grubic, Inc. (HRG) on the selection of the types of BMPs to utilize for compliance. Their respective locations came as a result of a feasibility investigation performed in the Spring of 2015. The investigation led to the conclusion that retrofitting existing detention basins to allow for infiltration and/or bioretention offered the most promising and cost effective means of achieving the required sediment load reduction. The Township and HRG identified candidate basins that offered the greatest potential for runoff reduction in locations in which the Township felt property owners would likely be cooperative. Once all of the candidate basins were identified, modeling was conducted by HRG using Pennsylvania State University's GWLF-E-based MapShed watershed modeling software (version 1.3.0) to determine the pollutant reductions each basin retrofit could yield.

The Township also expressed interest in the installation of vegetated swales with increased infiltration capabilities in two large, existing residential developments with no existing stormwater controls. The proposed vegetated swales would help reduce volume and rate of runoff entering the MS4, as well as provide additional water quality through bioretention and infiltration. The vegetated swales were added to the model and sediments reductions were recorded.

A street sweeping program was also included in the MapShed model. The Township proposes conducting township-wide street sweeping once per month during the months of April through October to provide further sediment reduction. This was deemed as a practical control measure since the Township has no current street sweeping program, residents have desired the service, and sweeping would also help achieve the Township's required total phosphorus load reduction mandated by the Goose Creek Watershed TMDL Report.

The results of the modeling revealed a need for further reduction of sediment to achieve the 60.87% reduction requirement (Table 5). The options of streambank restoration, stream calming, and riparian buffer restoration were investigated and determined by the Township and HRG to be a viable means to generate a greater sediment reduction, as well as a way to reduce nutrient loads through plant uptake. The Township first identified sections of stream along municipally owned properties that would allow for access to the streambank and buffer areas without requiring the procurement of easements from Township residents. The addition of the streambank and riparian buffer BMPs to the MapShed model resulted in the Township meeting its reduction requirement, as shown in Table 10.

Table 5: West Goshen MS4 Baseline Sediment Load & Proposed Sediment Load Reduction						
MS4	MS4 Baseline Sediment Reduction Target Sediment					
Permittee	Load Requirement Load					
(ton/year) (ton/year)						
West Goshen Twp.	470	60.87%	184			

viii. Proposed BMPs and Control Measures

The sediment reductions achieved through the implementation of the proposed BMPs described herein were determined through the use of the same MapShed model used to determine the Township's current sediment loads. Each of the proposed BMPs, their locations, implementation schedule, functionality, proposed pollutant reductions, and maintenance requirements are listed below.

Streambank Stabilization, Stream Calming, and Buffer Restoration BMPs

Streambank stabilization prevents further erosion and degradation of disturbed or cut back streambanks ultimately resulting in lower sediment and nutrient loads being released into the stream. Where practical, the Township will implement vegetative streambank stabilization to promote plant uptake of nutrient laden runoff in order to reduce the amount of nutrients eventually reaching the impaired waterways. Vegetative stabilization relies on the root structures of established plantings to stabilize the streambank and provide scour protection. This method offers a relatively inexpensive means of stabilization and provides a naturalized appearance to the rehabilitated streambank.

Stream calming will be achieved through the use of rock vanes, wing deflectors, and grade controls where practical in combination with streambank stabilization, riparian buffer projects, and floodplain reconnection. These instream structures will direct stream flow away from eroding or newly stabilized streambanks, as well as create stream meanders that will reduce stream velocity, further preventing streambank erosion and scour. The structures will be constructed of natural materials such as rock, root wads, and logs. The exact number and locations for the proposed instream structures will be determined upon approval of the TMDL Strategy during the completion of the Design Details.

West Goshen Township intends to perform riparian buffer restoration on the segments of stream to be stabilized. The goal of the riparian buffer projects is to naturalize the existing floodplain and reestablish buffer areas along the stream segments to a minimum width of 50 feet. The restorations will include the removal and replacement of dead and diseased vegetation; as well as new plantings in areas where buffers have diminished in size. The riparian buffer restoration project will be implemented

concurrently with the stabilization projects in order to maximize the nutrient load reduction potential of each segment of stream to be enhanced. The locations of the proposed streambank stabilization and riparian buffer restoration projects are displayed on the location map in Appendix D. A summary of reductions achieved on a per project basis are provided in Table 6.

Table 6: Pr	Table 6: Proposed Streambank Stabilization, Stream Calming and Buffer Restoration BMPs						
Location ID	Stream Name	Length of Stream Segment		e		Implementation Permit Term	Reduction Achieved
SS 4	Taylor Run	1,600 m	5,249 ft	3	13%		
SS 5	UNT to Taylor Run	600 m	1,969 ft	3	7%		
SS 6	UNT to Taylor Run	1,500 m	4,921 ft	4	9%		
SS 7	UNT to Taylor Run	1,600 m	5,249 ft	5	10%		
SS 8	UNT to Plum Run	1,200 m	3,937 ft	5	5%		

Operation and maintenance requirements for the streambank stabilization and buffer restoration projects shall include:

- Regular watering of plantings during first growing season. Planting in the fall may reduce the need for additional watering.
- Conduct monthly site visits to ensure plantings are healthy and well watered, weeds are properly managed, sufficient mulch is in place until site is stabilized and planting have become established.
- Conduct annual inspections once streambank is stabilized and plants have become established.
- Immediately upon notice; repair any rills, gullies, or streambank cutting that may occur.
- Remove weeds and invasive plant species during each growing season. Naturally growing native vegetation should be left intact to promoted stabilization of the streambank and surrounding area.
- Replace mulch as needed
- Remove accumulated trash and debris as noticed.
- Remove and replace dead and diseased plantings.
- Keep machinery and vehicles away from stabilized areas.

Street Sweeping Program

Street sweeping reduces the amount of sediment, nutrients, trash, and debris often found in stormwater by removing these potential contaminants from the road surface prior to it being swept up by stormwater runoff and carried through the storm sewer, eventually to the receiving waters (Table 7). West Goshen Township intends to conduct street sweeping once per month during the months of April through October.

Operation and maintenance requirements for the street sweeping control measure shall include:

• Develop and adhere to a regimented sweeping program that includes maps of sweeping areas, sweeping schedules, and maintenance schedules.

- Maintain sweeping equipment in good working order.
- Maintain a sweeping log to include: daily sweeping locations, operator's name, weight and volume of sweepings, and means of disposal.
- Dispose of sweepings in a manner deemed satisfactory by PADEP

Table 7: Propo	Table 7: Proposed Street Sweeping BMP Summary					
LocationFrequencyMonthsImplementationReductionIDOfPerPermit TermAchievedSweepingYear						
Township	Monthly	7	2	3%		

Detention Basin Retrofit

Detention basins are relatively simple basins designed to receive, temporarily hold, and discharge stormwater at a controlled rate. While they can provide rate and volume control, detention basins offer limited water quality benefit. Detention basin retrofits transform these simple catch, store, and release ponds into BMPs that provide infiltration, bioretention, and improved sediment and nutrient removal capabilities. This is achieved by extending the storage time, improving soil conditions to allow for greater infiltration rates, and naturalizing the basins with native and/or wetland plant species.

West Goshen Township conducted a detention basin retrofit on a large basin in 2010. The basin, known as the Bicking Basin, serves as the main stormwater management facility for a large residential development in the southeast corner of the Township. Finding that the retrofitted basin produced substantial water quality and aesthetic value, the Township expressed interest in conducting more retrofits in order to achieve the sediment reduction requirements mandated by the Christina River Basin TMDL.

The Township is proposing to perform four additional detention basin retrofits at locations within the Township limits of the Brandywine Creek watershed (Table 8). While the extent and nature of the retrofits will rely on the results of future engineering investigations, each basin retrofit will reduce the quantity and increase the quality of the stormwater runoff reaching the impaired streams. For modeling purposes, the fraction of area treated values for each retrofit were taken as a percentage of the basin's respective sub-basin. The locations of the proposed detention basin retrofit projects are displayed on the location map in Appendix E.

Table 8: Proposed Detention Basin Retrofit BMPs Summary					
Basin Location ID	Street Location	Implementation Permit Term	Reduction Achieved		
RF 4	Farren Lane	2	2%		
RF 5	Hamilton Drive	2	2%		
RF 6	Goshen Road	3	2%		
RF 7	Garlington Circle	4	3%		

A runoff capture depth of 1.25 inches was used in the modeling of the proposed basin retrofit projects. This value is slightly more conservative than the 2.00 inch design capture depth required by Control Guideline Two (CG-2) as noted in Chapter 3 of PADEP's *Pennsylvania Stormwater Best Management Practices Manual*.

Operation and maintenance requirements for the detention basin retrofit projects shall include:

- Conduct regular inspections until site is stabilized and plantings are established.
- Immediately upon notice, repair and erosion issues in the basin.
- Remove and replace dead of diseased plantings.
- Remove weeds and invasive species from the basin.
- Remove accumulated sediment and debris.
- Mulch as necessary.
- Use no chemical herbicides or pesticides.
- Maintain a "No Mow Zone" around the perimeter of the basin.

Vegetated Swales with Infiltration Capabilities

Much like bioretention basins, vegetated swales with subsurface infiltration areas decrease the quantity of stormwater runoff entering the storm sewer system, while increasing stormwater quality. Modified vegetated swales with increased infiltration capabilities are an alternative to concrete channels or storm sewer piping that provide conveyance of stormwater, while allowing for infiltration and plant uptake to help reduce pollutant loads.

The Township proposes to install a vegetated swale (BS1) at a location that is currently comprised of a concrete, low flow channel and small elongated basin (Table 9). Additionally, the Township has identified the North Hills residential development as a target for large scale vegetated swale installation project (BS2). The residential development currently has no stormwater facilities, allowing storm generated runoff to flow over ground, completely unmanaged.

A runoff capture depth of 1.25 inches was used in the modeling of the proposed vegetated swale projects. This value is slightly more conservative than the 2.00 inch design capture depth required by Control Guideline Two (CG-2) as noted in Chapter 3 of PADEP's *Pennsylvania Stormwater Best Management Practices Manual*.

Table 9: Proposed Vegetated Swales w/ Infiltration BMPs Summary					
BasinStreetImplementationReductionLocationLocationPermit TermAchievedID </th					
BS 1	East Marshall Street	2	1%		
BS 2	North Hills Development	3	4%		

Operation and maintenance requirements for the vegetated swale installation projects shall include:

- Conduct regular inspections until site is stabilized and plantings are established.
- Immediately upon notice, repair and erosion issues in the basin.
- Remove and replace dead of diseased plantings.
- Remove weeds and invasive species from the basin.
- Remove accumulated sediment and debris.
- Mulch as necessary.
- Use no chemical herbicides or pesticides.
- Maintain a "No Mow Zone" around the perimeter of the basin.

ix. BMP Modeling Results

As shown in Table 10 below, the combination of BMPs West Goshen Township has installed and proposes to implement will achieve a reduction in sediment of 61% of the current baseline load. Detailed modeling results can be found in Appendix B.

Table 10: Summary of MapShed Modeling Results						
Current SedimentProposed SedimentReductionReduction						
Load	Load Achieved Required					
w/out BMPs	Ps w/ BMPs (%) (%)					
(ton/year) (ton/year)						
470	184	61	60.87			

x. Implementation Schedule

Permit Term 2 (current term)

- Create MS4 TMDL Design Detail.
- Explore funding opportunities.
- Consider establishing a stormwater authority.
- Explore street sweeping options.
- Implement street sweeping program.
- Document all street sweeping activities
- Maintain records of all MS4 / TMDL related activities.
- Encourage land owner participation in stream improvement projects.
- Conduct Farren Lane Basin Retrofit (RF 4)
- Conduct Hamilton Drive Basin Retrofit (RF 5)
- Install East Marshall Street vegetated swale (BS 1)
- Conduct annual inspections of installed BMPs included in TMDL Plan.

Permit Term 3 (2017 – 2022)

- Conduct Goshen Basin Retrofit (RF 6)
- Conduct North Hills vegetated swale construction project (BS 2)
- Conduct Stream Enhancement Project on Stream Segment Four (SS 4)
- Conduct Stream Enhancement Project on Stream Segment Five (SS 5)
- Conduct annual TMDL Plan evaluations. Adjust plan to meet goal as necessary.
- Update TMDL records no less than annually.
- Reevaluate sweeping program and increase frequency if beneficial.
- Continue to seek public involvement in MS4 / TMDL related projects.
- Continue to explore funding opportunities.
- Conduct annual inspections of installed BMPs included in TMDL Plan.

Permit Term 4 (2022-2027)

- Conduct Garlington Circle Basin Retrofit (RF 7)
- Conduct Stream Enhancement Project on Stream Segment Six (SS 6)
- Conduct annual TMDL Plan evaluations. Adjust plan to meet goal as necessary.
- Update TMDL records no less than annually.
- Continue to seek public involvement in MS4 / TMDL related projects.
- Continue to explore funding opportunities.
- Conduct annual inspections of installed BMPs included in TMDL Plan.

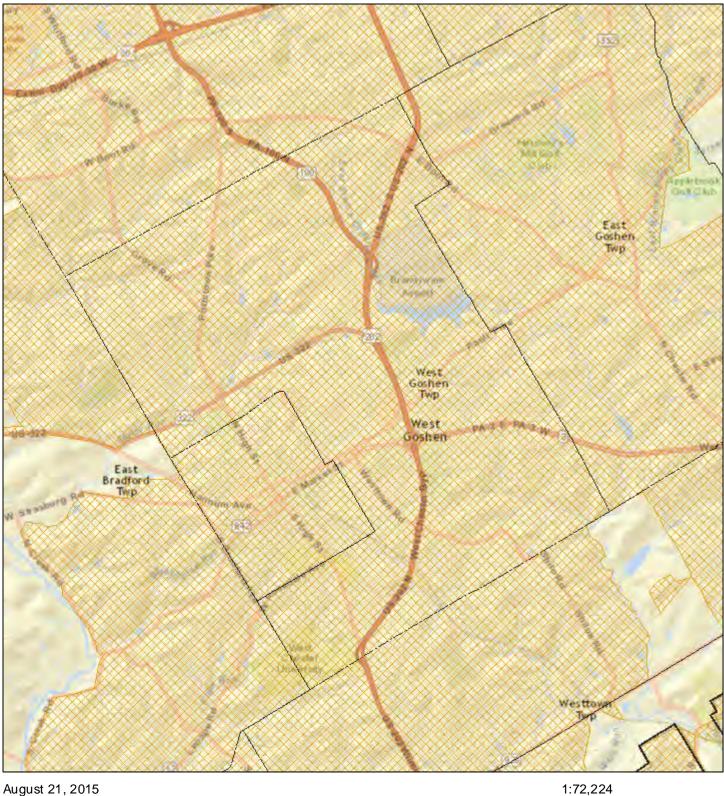
Permit Term 5 (2027-2032)

- Conduct Stream Enhancement Project on Stream Segment Seven (SS 7)
- Conduct Stream Enhancement Project on Stream Segment Seven (SS 8)
- Conduct annual TMDL Plan evaluations.
- Update TMDL records no less than annually.
- Continue to seek public involvement in MS4 / TMDL related projects.
- Continue to explore funding opportunities.
- Conduct annual inspections of installed BMPs included in TMDL Plan.

xi. Effectiveness Evaluation

The MapShed model will be updated and rerun every permit year in conjunction with the preparation of the Township's MS4 Annual Report in order to assess the effectiveness of the BMPs implemented during that permit year. The efforts completed to date will be documented and compared to the intent of the MS4 TMDL Strategy. If necessary, the MS4 TMDL Strategy will be revised each year in order to revise the implementation schedule to include reasonable activities and maximize pollutant reductions. The intent of this MS4 TMDL Strategy is to be adaptive, iterative, and dynamic to show measurable progress toward meeting pollutant load reductions.

4.0 SUMMARY OF FINDINGS


The information presented in this TMDL Strategy serves as sufficient evidence that West Goshen Township has taken the proper steps to produce an achievable plan of action to meet the 60.87% reduction of sediment, mandated by the "Total Maximum Daily Loads for Bacteria and Sediment in the Christina River Basin, Pennsylvania, Delaware, and Maryland" as established by the United States Environmental Protection Agency, Region III in September 2006.

5.0 <u>REFERENCES</u>

- 1. Evans, B., & Corradini, K. (n.d.). MapShed Overview Page. Retrieved August 18, 2015, from http://www.mapshed.psu.edu/overview.htm
- 2. Evans, B., & Corradini, K. (2015) MapShed Download Page. Retrieved August 15, 2015, from http://www.mapshed.psu.edu/download.htm
- 3. PA DEP. (2006) Pennsylvania Stormwater Best Management Practices Manual. Commonwealth of Pennsylvania

<u>APPENDIX A</u>

STREAM CLASSIFICATION MAPS

Municipalities

Urban Areas 2000

County Boundaries

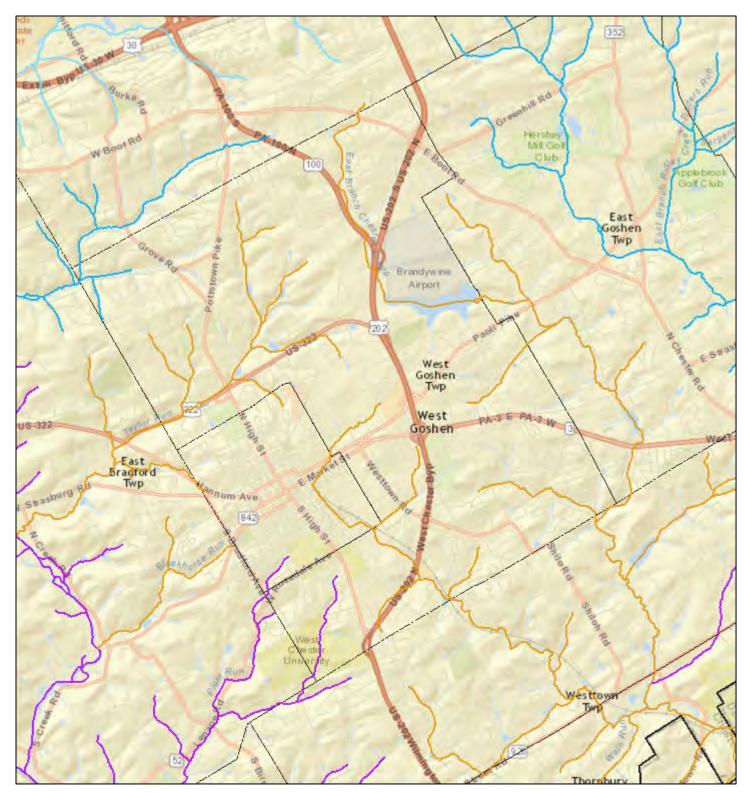
West Goshen Township Urbanized Area Map (2000 Census)

Sources: Esri, HERE, DeLorme, USGS, Intermap, increment P Corp., NRCAN, Esri Japan, METI, Esri China (Hong Kong), Esri (Thailand), MapmyIndia, © OpenStreetMap contributors, and the GIS User Community Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and

2

0.5

1


1

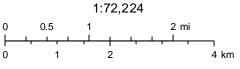
0

0

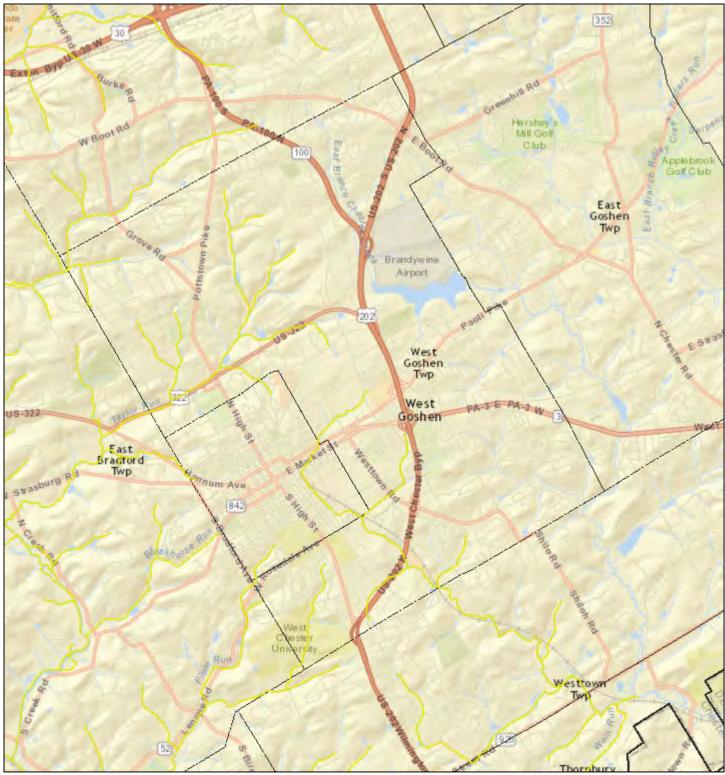
4 km

2 mi

August 21, 2015

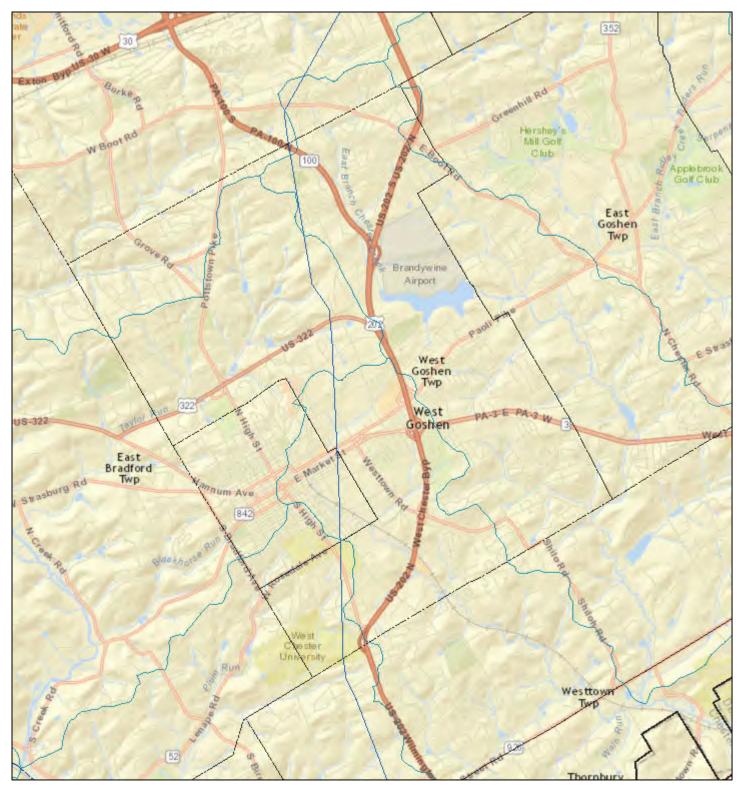

- Cold Water Fish
- Exceptional Value
- High Quality
- Trout Stocking
- Warm Water Fish

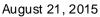
Overlap


Γï

- Missing from CH93
 - County Boundaries
 - Municipalities

West Goshen Township Stream Designated Use Map




Sources: Esri, HERE, DeLorme, USGS, Intermap, increment P Corp., NRCAN, Esri Japan, METI, Esri China (Hong Kong), Esri (Thailand), MapmyIndia, © OpenStreetMap contributors, and the GIS User Community Source: Esri, DigitalGobe, GeoEye, Earthstar Geographics, CNES/Aibus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and

West Goshen Township TMDL Stream Map Sources: Esri, HERE, DeLorme, USGS, Intermap, increment P Corp., NRCAN, Esri Japan, METI, Esri China (Hong Kong), Esri (Thailand), MapmyIndia, © OpenStreetMap contributors, and the GIS User Community Source: Esri, DigitalGbbe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and

- Hydrologic Unit Code (HUC) 8
- Hydrologic Unit Code (HUC) 12
 - County Boundaries
 - Municipalities

West Goshen Township Hydrologic Unit Code Map

Sources: Esri, HERE, DeLorme, USGS, Intermap, increment P Corp., NRCAN, Esri Japan, METI, Esri China (Hong Kong), Esri (Thailand), MapmyIndia, © OpenStreetMap contributors, and the GIS User Community Source: Esri DigitalGobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and

APPENDIX B

DETENTION BASIN INVENTORY

	DETE	NTION BA	SIN INVI	ENTORY	Y LIST		
	_		FOR		_		
	<u>\</u>	VEST GOS	<u>SHEN TO</u>	WNSHII	<u>P</u>		
	dywine Creek Water	rshed		* Iden	tifies basins to	be retrofitt	ed
Basins in Goos	e Creek Watershed					-	-
HRG Number	Latitude	Longitude	Area (S.F.)	Berm Condition	Interior Condition	Inspected	Photos Taken
1	39.94718	-75.58759	3204.084		Good	No	
2	39.94782	-75.58113	9135.569			No	
3	39.94792	-75.58828	5439.317		Fair	Yes	No
4	39.99059	-75.61536	9624.964	Good	Good	Yes	Yes
5	39.99080	-75.61641	7807.431	Good	Good	Yes	Yes
6	39.96809	-75.55575	7528.137	Good	Good	No	Yes
7	39.96754	-75.56867	10307.368	Good	Poor	No	Yes
8	39.96736	-75.56716	20967.681	Good	Good	No	Yes
9	39.95406	-75.58659	5126.880	Good	Fair	Yes	Yes
10	39.94684	-75.58067	6864.375	Good	Fair	No	Yes
11	39.97008	-75.56379	2729.372			No	No
12	40.00879	-75.58935	70218.421			Yes	
13	40.00634	-75.59595	10915.284			No	
14	40.00191	-75.60158	5785.645	Good	Good	Yes	
15	39.99987	-75.59750	27703.009			Yes	
16	39.99950	-75.58459	18764.754			No	
17	39.99875	-75.58780	13515.554	Good	Good	No	Yes
18	39.99745	-75.59285	30879.342	Good	Good	No	Yes
19	39.99832	-75.59328	2839.946			No	
20	39.99817	-75.59324	1318.536			No	
21	39.99806	-75.58790	5206.718	Good	Good	No	Yes
22*	39.99808	-75.61215	34774.320			Yes	
23	39.99683	-75.58263	59170.694			No	
24	39.99807	-75.61955	1022.456			No	
25	39.99700	-75.58058	17919.954			No	
26	39.99679	-75.58948	34777.153	Good	Good	No	Yes
27	39.99680	-75.59723	21901.563			Yes	
28	39.99631	-75.58887	25372.668	Good	Good	No	Yes
29	39.99553	-75.59604	116460.082			No	
30*	39.99563	-75.61169	35174.440			Yes	
31	39.99517	-75.59220	10637.778	Good	Good	No	Yes
32	39.99513	-75.59074	6816.425	Good	Good	No	Yes
33	39.99565	-75.62300	26410.181			Yes	
34	39.99558	-75.62493	23230.528			Yes	
35	39.99429	-75.58691	26603.572			No	
36	39.99467	-75.59485	1613.452			No	
37	39.99437	-75.58143	7891.111	Good	Good	No	

	lywine Creek Water e Creek Watershed	Sheu	* Identifies basins to be retrofitted					
HRG Number	Latitude	Longitude	Area (S.F.)	Berm Condition	Interior Condition	Inspected	Photos Taken	
38	39.99393	-75.59451	9073.184			No		
39	39.99418	-75.60757	8264.250			Yes		
40	39.99252	-75.57726	82462.901			No		
41	39.99282	-75.59354	8168.940			No		
42	39.99269	-75.58912	12063.819	Good	Good	No	Ye	
43	39.99331	-75.63047	5165.890	Good	Good	Yes	Ye	
44	39.99213	-75.58769	46065.144	Good	Fair	No	Ye	
45	39.99055	-75.59131	33404.976	Good	Good	No	Ye	
46	39.99077	-75.62134	15911.426			Yes		
47	39.98976	-75.57535	6732.972			No		
48	39.98973	-75.57633	12258.480			No		
49	39.98962	-75.57713	15774.309			No		
50	39.98927	-75.57454	22810.288			No		
51	39.98921	-75.57811	6938.158			No		
52	39.98909	-75.57668	11234.336			No		
53	39.98861	-75.59041	64962.574	Good	Fair	No	Y	
54	39.98843	-75.57874	33961.044			No		
55	39.98930	-75.62833	6595.738			Yes		
56	39.98827	-75.58227	15835.445			No		
57	39.98840	-75.58717	5598.762	Good	Good	No	Ye	
58	39.98824	-75.62017	24901.117			Yes		
59	39.98777	-75.58371	9051.954	Good	Good	No	Ye	
60	39.98739	-75.59171	7538.337			No		
61	39.98804	-75.62975	7587.964			Yes		
62	39.98764	-75.62808	7524.782			Yes		
63	39.98675	-75.59501	7083.623			No		
64	39.98584	-75.57864	15809.737			No		
65	39.98667	-75.63051	9280.439			Yes		
66	39.98604	-75.58889	934.602	Good	Good		Y	
67	39.98532	-75.59140	4237.641			No		
68	39.98493	-75.59240	13335.506			No		
69	39.98406	-75.58778	7687.108			No		
70	39.98392	-75.58711	14726.615	Good	Good	No	Ye	
71	39.98368	-75.58467	12714.325			No		
72	39.98365	-75.59016	7946.313	Good	Good	No		
73	39.98350	-75.58844	17278.098	Good	Good	No		
74	39.98336	-75.59280	6468.740			No		
75	39.98301	-75.58264	7638.695	Good	Good	No		
76	39.98385	-75.62872	2876.687	0004	0000	Yes		
77	39.98255	-75.59183	1273.359			No		
78	39.98174	-75.58519	21284.264			No		
79	39.98174	-75.62478	9533.034			Yes		
80	39.98038	-75.62367	6129.820			Yes		
81	39.97971	-75.59812	28132.995			No		
81	39.97971	-75.58279	11507.000			No		

asins in Branc asins in Goos	ins in Goose Creek Watershed			* Identifies basins to be retrofitted					
HRG Number	Latitude	Longitude	Area (S.F.)	Berm Condition	Interior Condition	Inspected	Photos Taken		
83	39.97928	-75.58872	3695.027			No			
84	39.97819	-75.57965	37598.203			No			
85	39.97869	-75.61016	10528.974			No			
86	39.97777	-75.61350	2730.520			Yes			
87	39.97697	-75.58918	14517.900			No			
88	39.97686	-75.58723	4287.248	Good	Good	No			
89	39.97722	-75.62954	24535.206			Yes			
90	39.97678	-75.61306	10917.156			Yes			
91	39.97644	-75.59306	4346.412	Good	Good	No	Ye		
92	39.97689	-75.62527	10873.347			Yes			
93	39.97678	-75.63053	5996.857			Yes			
94	39.97611	-75.62552	33746.552			Yes			
95	39.97547	-75.58590	7123.508	Good	Good	No	Ye		
96	39.97610	-75.63002	2953.574			Yes			
97	39.97547	-75.59102	1128.161			No			
98	39.97472	-75.59991	3399.338			No			
99	39.97480	-75.63045	47881.319			Yes			
100*	39.97468	-75.60933	24609.414			No			
101	39.97453	-75.60062	3552.651			No			
102*	39.97353	-75.60313	44275.346			No			
103	39.97270	-75.59868	13619.808			No			
104	39.97318	-75.62252	24493.351			Yes			
105	39.97152	-75.57222	3443.325			No			
106	39.97156	-75.57359	326.329			No			
107	39.97127	-75.56782	7755.268	Good	Good	No	Ye		
108	39.97208	-75.61851	24636.070			Yes			
109	39.97137	-75.58916	6062.319			No			
110	39.97109	-75.61259	12962.971			No			
111	39.97109	-75.61808	9440.801			Yes			
112	39.96959	-75.60071	2834.248			No			
113	39.96860	-75.57195	22246.543	Good	Good	No	Ye		
114*	39.96926	-75.62222	19517.261			Yes			
115	39.96803	-75.55746	13833.550			No			
116	39.96831	-75.57373	16927.592	Good	Good	No	Ye		
117*	39.96884	-75.62310	22115.639			Yes			
118	39.96717	-75.55447	11160.524			No			
119	39.96737	-75.58644	2795.708			No			
120	39.96768	-75.61812	6862.672			Yes			
121	39.96651	-75.56486	23239.832			No			
122	39.96638	-75.55565	6819.133			No			
123	39.96328	-75.56668	175553.012			Yes			
124	39.96330	-75.57478	13624.568			No			
125	39.96257	-75.58480	12035.107			No			
126	39.96145	-75.56681	16414.984			No			
120	39.96172	-75.58230	247.034			No			

	se Creek Watershed						
HRG Number	Latitude	Longitude	Area (S.F.)	Berm Condition	Interior Condition	Inspected	Photos Taken
128	39.96136	-75.57029	767.941			No	
129	39.96152	-75.58996	3020.233			No	
130	39.96087	-75.57116	6974.709			No	
131	39.96057	-75.56608	18089.714			No	
132	39.96042	-75.58203	5643.133			No	
133	39.96028	-75.58051	1350.796			No	
134	39.96006	-75.58092	1868.323			No	
135	39.95995	-75.58173	2379.693			No	
136	39.95957	-75.57108	12074.218			No	
137	39.95966	-75.58142	669.789			No	
138	39.95934	-75.59039	15021.347			No	
139	39.95894	-75.58591	1104.636			No	
140*	39.95838	-75.58493	12138.119			No	
141	39.95798	-75.58858	7372.880	Good	Fair	No	Yes
142	39.95724	-75.55564	18617.649	Good	Good	No	Yes
143	39.95764	-75.57956	5691.734			No	
144	39.95707	-75.56567	18918.248	Good	Fair	No	Yes
145	39.95677	-75.55332	21174.628			No	Yes
146	39.95624	-75.55812	19555.993	Good	Good	No	Yes
147	39.95681	-75.58375	3289.101	Good	Good	No	
148	39.95595	-75.56451	22982.825	Good	Good	No	Yes
149	39.95580	-75.57831	4572.443			No	
150	39.95513	-75.56624	31126.045			No	
151	39.95534	-75.58735	45554.691			No	
152	39.95442	-75.57049	7447.597			No	
153	39.95287	-75.58945	26080.100			No	
154	39.95234	-75.57039	28898.629			No	
155	39.95182	-75.59002	36877.949			No	
156*	39.95116	-75.57789	54641.493			No	
157	39.95170	-75.58139	263.627			No	
158	39.95118	-75.58799	837.838			Yes	
159	39.95089	-75.58954	10415.446			Yes	
160	39.95063	-75.59043	4525.520			Yes	
161	39.94872	-75.57306	25972.840			Yes	
162	39.94843	-75.58829	12975.934			Yes	
163	39.94904	-75.58917	9381.842			No	
164	39.94886	-75.59502	3703.182			No	
165	39.94765	-75.57633	8340.843	Good	Poor	No	Yes
166	39.94681	-75.58537	8644.853			No	
167	39.94650	-75.58408	12395.943			No	
168	39.94659	-75.58667	769.841			No	
169	39.94637	#NAME?	5267.717			No	
170	39.94597	-75.58833	20859.852			No	
171	39.94570	-75.58196	17198.874			No	
172	39.94570	-75.57459	7162.569	Good	Good	No	Yes
Basins in Bran	dywine Creek Water	shed		* Iden	tifies basins to	be retrofitt	ed
Basins in Goos	se Creek Watershed						

HRG Number	Latitude	Longitude	Area (S.F.)	Berm Condition	Interior Condition	Inspected	Photos Taken
173	39.94568	-75.58104	14094.629			No	
174	39.94580	-75.58979	4874.571			No	
175	39.94511	-75.57737	53110.734	Good	Good	No	
176*	39.94418	-75.58628	48777.126			No	
177	39.94280	-75.59183	2866.032			No	
178	39.94442	-75.57906	16219.248	Poor	Poor	No	No
179	39.98061	-75.58973	10669.160	Fair	Fair	No	No
180	39.99112	-75.62682	14437.636	Good	Good	Yes	Yes
181	39.99501	-75.60442	14087.339	Good	Good	Yes	Yes
182	40.00211	-75.58573	90018.513	Fair	Poor	Yes	Yes
183	39.97923	-75.60644	291.784			No	
184	39.95089	-75.58761	6557.544			No	
190	39.95393	-75.56002	11134.509				
191	39.95426	-75.56077	7385.767				
192	39.98108	-75.59278	41924.252				
193	40.00334	-75.61073	17560.821				
194	39.94573	-75.57596	4501.233				
195	39.94754	-75.57491	1972.853				
196	39.95129	-75.58778	1107.576				
197	39.94995	-75.57939	3545.041				
198	39.95374	-75.58562	7895.605				
199	39.95771	-75.58786	7644.908				
200	39.96044	-75.58986	1224.238				
201	39.96261	-75.59228	4605.205				
202*	39.95879	-75.58469	52375.354				
203	39.97071	-75.57147	6187.142				
204	39.98577	-75.58577	12005.301				
205	39.98637	-75.58464	48817.390				
206	39.98682	-75.58649	3799.707				
207	39.98771	-75.58530	7164.952				
208	39.98652	-75.58339	24242.175				
209	39.98558	-75.58275	8507.324				
210	39.98089	-75.58216	60736.894				

<u>APPENDIX C</u>

MAPSHED MODELING RESULTS

Modeled Baseline Sediment Load for West Goshen Township MS4

- Modeled Baseline MS4 Sediment Load = 939,766.1 lb/yr = 469.9 ton/yr
- Required Reduction = (469.9 ton/yr)(60.87%) = 286 ton/yr

Watershed Totals View loads for municipal		Municipal	Municipality Loads		Regulated Loads		Unregulated Loads	
		lity: West Goshen Twp (8		83080) 🔹				
		Sed	iment.		ogen	Phos	ehonus	
Source	Source Area (ac)	Total Load (lb)	Loading Rate (Ib/ac)	Total Load (Ib)	Loading Rate (Ib/ac)	Total Load (lb)	Loading Rate (Ib/ac)	
Hay/Pasture	173	36762.50	212.50	115.90	0.67	26.00	0.15	
Cropland	91	239957.90	2636.90	694.30	7.63	119.20	1.31	
Forest	662	12180.80	18.40	59.60	0.09	6.60	0.01	
Wetland	10	57.00	5.70	2.30	0.23	0.10	0.01	
Disturbed	72	10029.60	139.30	22.30	0.31	5.80	0.08	
Turfgrass	25	2385.00	95.40	18.30	0.73	1.80	0.07	
Open Land	0	0.00	0.00	0.00	0.00	0.00	0.00	
Bare Rock	0	0.00	0.00	0.00	0.00	0.00	0.00	
Sandy Areas	0	0.00	0.00	0.00	0.00	0.00	0.00	
Unpaved Roads	0	0.00	0.00	0.00	0.00	0.00	0.00	
LD Mixed	0	0.00	0.00	0.00	0.00	0.00	0.00	
MD Mixed	57	4058.40	71.20	83.80	1.47	9.70	0.17	
HD Mixed	287	20434.40	71.20	421.90	1.47	48.80	0.17	
LD Residential	10	206.00	20.60	4.40	0.44	0.50	0.05	
MD Residential	946	67355.20	71.20	1390.60	1.47	160.80	0.17	
HD Residential	17	1212.10	71.30	25.00	1.47	2.90	0.17	
Water	12						Source Weighting	
Farm Animals				0.0		0.0	0.000	
Tile Drainage		0.00		0.0		0.0	0.000	
Stream Bank		545127.20		272.5		61.1	0.165	
Groundwater				12129.1		180.1	0.158	
Point Sources				0.0		0.0	0.000	
Septic Systems	-			442.3		0.0	0.158	
Totals	2362	939766.1		15682.3		623.4		

Modeled Baseline Sediment Load for Brandywine Creek Watershed

- Current Brandywine Creek Watershed Sediment Load = 4,038 ton/yr
- Brandywine Creek Watershed Target Sediment Load = 4,038 ton/yr 286 ton/yr = 3,752 ton/yr

GWLF-E Loads for file: BrandywineCreek_Baseline_08

Period of analysis: 17 years from 1975 to 1991

	-	ons			ads (Pounds)	
Month	Erosion	Sediment	Dissolved N	Total N	Dissolved P	Total P
Jan	586.6	222.9	10610.9	11955.5	254.4	472.4
Feb	832.9	219.8	10351.9	11464.0	220.6	411.7
Mar	677.5	250.6	12814.2	13501.9	233.2	412.9
Арг	1161.1	264.4	12572.9	13210.8	214.5	392.0
May	1872.3	288.8	9864.5	10314.4	157.2	317.6
Jun	1488.1	203.0	6591.6	7025.2	109.5	226.8
Jul	2452.8	330.5	4033.8	5469.7	103.9	341.5
Aug	1344.2	81.8	1259.0	1678.4	32.4	92.4
Sep	1335.3	482.5	1450.0	3452.7	76.8	406.8
Oct	620.1	281.5	3081.2	4784.8	102.8	343.8
Nov	915.8	557.6	4831.9	7555.5	151.8	578.3
Dec	3123.7	854.6	8919.2	12220.0	208.0	800.3
Totals	16410.4	4038.1	86381.2	102632.9	1865.1	4796.6

Sediment Load for Brandywine Creek Watershed w/ BMPs – Iterative Calculation – Input Data

• Proposed BMP: Street sweeping monthly, April through October

Detention Basins		Constru	cted Wet	lands	-
Detention basin volume (m ³) 41	276	Total are	a urban la	and (Ha) 2444	
Basin dead storage (m ³)				ated (0-1) 0.000	
Basin surface area (m ²) 41:	276	1100.011	or area are	0.000	
Basin days to drain 3	-	-Street S	weeping	<u>}</u>	
Basin cleaning month			Times/mon	th T	imes/month
Dual cleaning month 10		January	0	July	1
Stream Protection		February	0	August	1
	11	March	0	September	1
		April	1	October	1
Fraction of streams treated (0-1)	0	May	1	November	0
Total streams in non-ag areas	62.2	June	1	December	0
Streams w/bank stabilization (km)	0	Impervie	ous Surfa	ce Reductio	n
		,	& Red % Are	a 🦻	& Red % Are
Infiltration/Bioretention		LD Mixed	0 0	LD Residential	0 0
Amount of runoff retention (cm)	Ō	MD Mixed	0 0	MD Residential	0 0
Fraction of area treated (0-1)	0	HD Mixed	0 0	HD Residential	0 0
CSN Tool Data					?
	Pollutant I	Load Reduced	<u>d</u> <u>D</u>	evelopment Ty	/pe*
Storm Event Simulated (cm) 0.0	TSS (kg)	0.0	C LD Re		LD Mixed
Area Simulated (Ha) 0	TN (kg)	0.0			MD Mixed
Selected Dev Type Area (Ha) 0	TP (kg)	0.0	C HD R * if no resi	esidential 🥂 🦟 dential area, use ''	HD Mixed Mixed'' type

Sediment Load for Brandywine Creek Watershed w/ BMPs – Iterative Calculation - Result

- Brandywine Creek Watershed Sediment Load w/ Street Sweeping = 4023 ton/yr
- Reduction = 4038 lb/yr 4023 ton/yr = 15 ton/yr

GWLF-E Loads for file: Brandywine_Sweeping-0

	1	ons		Nutrient Lo	ads (Pounds)	
Month	Erosion	Sediment	Dissolved N	Total N	Dissolved P	Total P
Jan	586.6	222.0	10653.5	12071.1	258.7	480.3
Feb	832.9	218.9	10393.5	11574.8	224.3	418.6
Mar	677.5	249.7	12865.7	13632.4	237.1	419.8
Арг	1161.1	263.3	12497.6	12961.0	204.5	363.5
May	1872.3	287.7	9833.2	10201.8	152.1	303.2
Jun	1488.1	202.3	6557.9	6911.2	104.8	213.7
Jul	2452.8	329.3	3965.5	5266.5	96.5	323.4
Aug	1344.2	81.5	1227.9	1589.0	29.1	84.2
Sep	1335.3	480.7	1395.5	3302.9	71.5	396.6
Oct	620.1	280.5	2980.2	4488.3	92.2	317.8
Nov	915.8	555.5	4851.3	7628.5	154.3	588.0
Dec	3123.7	851.3	8955.0	12338.1	211.6	813.8
Totals	16410.4	4022.6	86176.8	101965.6	1836.6	4723.0

Period of analysis: 17 years from 1975 to 1991

Sediment Load for Brandywine Creek Watershed w/ BMPs – Iterative Calculation – Input Data

• Proposed BMP: Basin Retrofit #4

rio BMP Editor
Constructed Wetlands
Total area urban land (Ha) 2444
Fraction of area treated (0-1) 0.000
, , , , , , , , , , , , , , , , , , ,
Street Sweeping
Times/month Times/month
January 0 July 1
February 0 August 1
March 0 September 1
April 1 October 1
May 1 November 0
June 1 December 0
Impervious Surface Reduction
% Red % Area % Red % Area
LD Mixed 0 0 LD Residential 0 0
MD Mixed 0 0 MD Residential 0 0
HD Mixed 0 0 HD Residential 0 0
Load Reduced Development Type*
0.0 C LD Residential C LD Mixed
0.0 C MD Residential C MD Mixed
0.0 C HD Residential C HD Mixed * if no residential area, use "Mixed" type

Sediment Load for Brandywine Creek Watershed w/ BMPs - Iterative Calculation - Result

- Brandywine Creek Watershed Sediment Load w/ Street sweeping and Basin Retrofit 4 = 4,013 ton/yr
- Reduction = 4,023 ton/yr 4,013 ton/yr = 10 ton/yr

GWLF-E Loads for file: Brandywine_Basin4-0

Period of analysis: 17 years from 1975 to 1991

	1	ons	-	Nutrient Lo	ads (Pounds)	
Month	Erosion	Sediment	Dissolved N	Total N	Dissolved P	Total P
Jan	587.3	221.4	10649.4	12052.1	258.1	477.0
Feb	833.5	218.2	10384.6	11541.2	223.0	413.7
Mar	678.8	249.0	12855.0	13593.3	235.2	413.7
Арг	1163.4	262.4	12486.8	12921.5	202.4	357.2
May	1875.9	287.4	9837.6	10213.0	151.7	302.3
Jun	1491.0	201.7	6557.8	6907.7	104.3	212.0
Jul	2457.5	328.7	3955.2	5238.6	95.3	321.1
Aug	1346.8	80.6	1216.6	1557.1	27.9	81.1
Sep	1338.0	480.7	1388.4	3294.7	71.1	397.7
Oct	621.3	278.7	2964.7	4450.8	90.7	314.4
Nov	917.6	554.4	4830.1	7576.2	152.3	584.5
Dec	3099.3	849.3	8948.2	12313.8	210.7	812.5
Totals	16410.4	4012.5	86074.4	101659.8	1822.7	4687.1

Sediment Load for Brandywine Creek Watershed w/ BMPs – Iterative Calculation – Input Data

• Proposed BMP: Basin Retrofit #5

Detention Basins		Construct	ed Wet	ands	
Detention basin volume (m ³)	1276	Total area	urban la	nd (Ha) 244	4
Basin dead storage (m ³)	1			ated (0-1) 0.00	10
Basin surface area (m ²)	1276			and a fear Moree	~
Basin days to drain	1	Street Sw	reeping	-	
Basin cleaning month	1	Т	imes/mont	h	Times/month
Dasin dealing monai I	-	January	0	July	1
Stream Protection		February	0	August	1
Vegetative buffer strip width (m)	11	March	0	September	1
	-	April	1	October	1
Fraction of streams treated (0-1)	0.000	May	1	November	0
Total streams in non-ag areas	62.2	June	1	December	0
Streams w/bank stabilization (km)	0.0	Impervior	us Surfa	ce Reductio	on
		%	Red % Are	a	% Red % Ai
Infiltration/Bioretention		LD Mixed	0	LD Residential	0 0
Amount of runoff retention (cm)	3.175	MD Mixed	0	MD Residential	0 0
Fraction of area treated (0-1)	0.0066	HD Mixed	0	HD Residential	0 0
CSN Tool Data					
		ad Reduced	D	evelopment T	ype*
Storm Event Simulated (cm) 0.0		0.0	C LD Re		LD Mixed
Area Simulated (Ha) 0	10.25	0.0			MD Mixed
Selected Dev Type Area (Ha) 🛛	TP (kg)	0.0	C HD Re * if no resident if no re	esidential (dential area, use	" HD Mixed "Mixed" type

Sediment Load for Brandywine Creek Watershed w/ BMPs – Iterative Calculation - Result

- Brandywine Creek Watershed Sediment Load w/ Street sweeping, streambank stabilization, and Retrofits 4 & 5 = 4,005 ton/yr
- Reduction = 4,013 ton/yr 4,005 ton /yr = 8 ton/yr

GWLF-E Loads for file: Brandywine_Basin5-0

Period of analysis:	17 years from	1975 to 1991
---------------------	---------------	--------------

	Tons		Nutrient Loads (Pounds)			
Month	Erosion	Sediment	Dissolved N	Total N	Dissolved P	Total P
Jan	586.8	220.9	10644.4	12023.9	257.4	473.5
Feb	832.6	217.6	10376.2	11514.8	221.8	409.9
Mar	678.8	248.4	12846.2	13565.4	233.7	409.2
Арг	1163.3	261.6	12481.9	12898.5	201.2	353.1
May	1875.8	287.2	9843.1	10224.6	151.7	302.0
Jun	1490.9	201.2	6558.3	6902.9	103.9	210.7
Jul	2457.3	328.1	3947.7	5216.4	94.4	319.4
Aug	1346.7	80.2	1209.0	1539.9	27.1	79.5
Sep	1337.8	480.6	1383.8	3290.4	70.8	398.9
Oct	621.2	277.2	2953.3	4415.2	89.5	311.3
Nov	917.5	553.5	4812.6	7532.9	150.6	581.6
Dec	3101.7	848.2	8941.0	12301.5	209.8	812.4
Totals	16410.4	4004.8	85997.5	101426.4	1812.1	4661.5

Sediment Load for Brandywine Creek Watershed w/ BMPs – Iterative Calculation – Input Data

• Proposed BMP: Basin Retrofit #6

Detention Basins	Constructed Wetlands				
Detention basin volume (m ³) 41276	Total area urban land (Ha) 2444				
Basin dead storage (m ³)	Fraction of area treated (0-1) 0.000				
Basin surface area (m ²) 41276					
Basin days to drain 3	Street Sweeping				
Basin cleaning month	Times/month Times/month				
	January 0 July 1				
Stream Protection	February 0 August 1				
Vegetative buffer strip width (m) 15.24	March 0 September 1				
	April 1 October 1				
Fraction of streams treated (0-1) 0.000	May 1 November 0				
Total streams in non-ag areas 62.2	June 1 December 0				
Streams w/bank stabilization (km) 0.0	Impervious Surface Reduction				
	% Red % Area % Red % A				
Infiltration/Bioretention	LD Mixed 0 0 LD Residential 0 0				
Amount of runoff retention (cm) 3.175	MD Mixed 0 0 MD Residential 0 0				
Fraction of area treated (0-1) 0.010	HD Mixed 0 0 HD Residential 0 0				
CSN Tool Data					
	oad Reduced Development Type*				
erenin Exert ennanciea (enn) late	0.0 C LD Residential C LD Mixed				
Area Simulateu (ma) (u	0.0 C MD Residential C MD Mixed				
Selected Dev Type Area (Ha) 0 TP (kg)	0.0 C HD Residential C HD Mixed * if no residential area, use "Mixed" type				

Sediment Load for Brandywine Creek Watershed w/ BMPs - Iterative Calculation - Result

- Brandywine Creek Watershed Sediment Load w/ Street sweeping, and Retrofits 4, 5, & 6 = 3,997 lb/yr
- Reduction = 4,005 ton/yr 3,997 ton/yr = 8 ton/yr

Month	Tons		Nutrient Loads (Pounds)				
	Erosion	Sediment	Dissolved N	Total N	Dissolved P	Total P	
Jan	586.4	220.4	10639.5	12003.5	256.8	470.5	
Feb	831.5	216.9	10368.5	11480.7	220.7	405.5	
Mar	678.7	247.8	12836.4	13528.4	232.1	403.9	
Apr	1163.2	260.9	12480.1	12889.5	200.3	350.0	
May	1875.6	287.1	9848.1	10234.5	151.6	301.5	
Jun	1490.8	200.8	6557.9	6900.3	103.5	209.4	
Jul	2457.1	327.3	3939.7	5194.9	93.5	317.6	
Aug	1346.5	79.8	1202.4	1519.3	26,4	77.5	
Sep	1337.7	480.3	1379.1	3283.9	70.5	400.0	
Oct	621.2	275.6	2939.5	4374.8	88.1	307.8	
Nov	917.4	552.5	4797.5	7481.9	149.2	578.2	
Dec	3104.4	847.4	8935.3	12292.3	209.1	812.8	
Totals	16410.4	3996.8	85923,9	101184.0	1801.8	4634.9	

GWLF-E Loads for file: Brandywine_Basin6-0

Sediment Load for Brandywine Creek Watershed w/ BMPs – Iterative Calculation – Input Data

• Proposed BMP: Basin Retrofit #7

Urb	an Scenario	BMPEd	itor		1	
Detention Basins		Construct	ed Wet	lands	-	
Detention basin volume (m ³)	11276	Total area urban land (Ha) 2444				
Basin dead storage (m ³)	Fraction of area treated (0-1) 0.000					
Basin surface area (m ²)	\$1276				-	
Basin days to drain	3	Street Sw	reeping	-	_	
Basin cleaning month)	T January	imes/mont	h 1 July	limes/mont	
Stream Protection		February	0	August	1	
Vegetative buffer strip width (m)	15.24	March	0	September October	1	
Fraction of streams treated (0-1)	April May	1	November	0		
Total streams in non-ag areas	62.2	June	1	December	0	
Streams w/bank stabilization (km) 0.0	Imperviou	us Surfa	ce Reductio	n	
1 CH		-	Red % Are		% Red % A	
Infiltration/Bioretention		LD Mixed) 0	LD Residential	0 0	
Amount of runoff retention (cm)	3.175	MD Mixed () 0	MD Residential	0 0	
Fraction of area treated (0-1)	0.0152	HD Mixed	0	HD Residential	0 0	
CSN Tool Data		-				
	Pollutant Lo	ad Reduced	D	evelopment Ty	vpe*	
Storm Event Simulated (cm) 0.0	TSS (kg)	0.0	C LD Re	esidential C	LD Mixed	
Area Simulated (Ha)	TN (kg)	0.0	MDR	esidential C	MD Mixed	
Selected Dev Type Area (Ha)	TP (kg)	0.0	HD Re * if no resi	esidential 🛛 🤇	HD Mixed "Mixed" type	

Sediment Load for Brandywine Creek Watershed w/ BMPs – Iterative Calculation - Result

- Brandywine Creek Watershed Sediment Load w/ Street sweeping, and Retrofits 4, 5, 6, & 7 = 3,984 ton/yr
- Reduction = 3,997 ton/yr 3,984 ton/yr = 13.0 ton/yr

GWLF-E Loads for file: Brandywine_Basin7-0

	1	ons	Nutrient Loads (Pounds)				
Month	Erosion	Sediment	Dissolved N	Total N	Dissolved P	Total P	
Jan	585.9	219.6	10631.0	11968.6	255.7	465.6	
Feb	830.1	216.1	10356.6	11439.0	218.9	399.5	
Mar	678.6	247.0	12822.2	13469.6	229.9	395.6	
Apr	1163.0	259.8	12479.9	12871.6	199.3	345.3	
May	1875.3	286.9	9855.7	10251.3	151.6	301.1	
Jun	1490.6	200.0	6557.9	6893.4	102.9	207.2	
Jul	2456.8	326.3	3928.7	5160.0	92.3	314.6	
Aug	1346.4	79.3	1194.2	1497.8	25.5	75.4	
Sep	1337.5	479.5	1370.9	3268.6	70.0	400.6	
Oct	621.1	273.3	2919.8	4310.8	86.1	302.0	
Nov	917.3	551.2	4779.4	7444.0	147.4	576.0	
Dec	3107.9	846.5	8925.8	12275.9	207.9	812.9	
Totals	16410.4	3985.4	85822.0	100850.8	1787.5	4595.9	

Period of analysis: 17 years from 1975 to 1991

Sediment Load for Brandywine Creek Watershed w/ BMPs – Iterative Calculation – Input Data

• Proposed BMP: Vegetated Swale 1 with Subsurface Infiltration

Detention Basins	- Constructed Wetlands
Detention basin volume (m ³) 41276	
	Total area urban land (Ha) 2444
Basin dead storage (m ³)	Fraction of area treated (0-1) 0.000
Basin surface area (m ²) 41276	
Basin days to drain 3	Street Sweeping
Basin cleaning month	Times/month Times/month
	January 0 July 1
Stream Protection	February 0 August 1
Vegetative buffer strip width (m) 15.24	March 0 September 1
	April 1 October 1
Fraction of streams treated (0-1) 0.000	May 1 November 0
Total streams in non-ag areas 62.2	June 1 December 0
Streams w/bank stabilization (km) 0.0	Impervious Surface Reduction
	% Red % Area % Red % A
Infiltration/Bioretention	LD Mixed 0 0 LD Residential 0 0
Amount of runoff retention (cm) 3.175	MD Mixed 0 0 MD Residential 0 0
Fraction of area treated (0-1) 0.0172	HD Mixed 0 0 HD Residential 0 0
CSN Tool Data	
	Load Reduced Development Type*
Storm Event Simulated (cm) 0.0 TSS (kg)	0.0 C LD Residential C LD Mixed
Area Simulated (Ha) 0 TN (kg)	0.0 C MD Residential C MD Mixed
Selected Dev Type Area (Ha) 0 TP (kg)	0.0 C HD Residential C HD Mixed * if no residential area, use "Mixed" typ

Sediment Load for Brandywine Creek Watershed w/ BMPs - Iterative Calculation - Result

- Brandywine Creek Watershed Sediment Load w/ Street sweeping, Retrofits 4, 5,6,7, and Vegetated Swale 1= 3,981 ton/yr
- Reduction = 3,984 ton/yr 3,981 lb/yr = 3 ton/yr

GWLF-E Loads for file: BrandywineBioswale1-0

		ons			ads (Pounds)	
Month	Erosion	Sediment	Dissolved N	Total N	Dissolved P	Total P
Jan	585.7	219.3	10628.0	11954.0	255.4	463.7
Feb	829.5	215.7	10351.4	11419.7	218.3	397.1
Mar	678.6	246.7	12817.5	13456.7	229.1	393.4
Apr	1163.0	259.4	12479.7	12866.9	198.9	343.7
May	1875.3	286.8	9858.5	10257.2	151.7	300.9
Jun	1490.5	199.7	6558.1	6891.7	102.7	206.5
Jul	2456.7	325.8	3924.4	5148.6	91.8	313.6
Aug	1346.3	79.1	1191.6	1486.2	25.2	74.4
Sep	1337.5	479.4	1368.1	3260.7	69.8	400.8
Oct	621.1	272.4	2912.1	4288.0	85.3	300.0
Nov	917.3	550.6	4774.0	7430.4	146.9	575.4
Dec	3109.1	846.1	8922.2	12269.8	207.5	813.1
Totals	16410.4	3981.1	85785.6	100729.9	1782.4	4582.6

Period of analysis: 17 years from 1975 to 1991

Sediment Load for Brandywine Creek Watershed w/ BMPs – Iterative Calculation – Input Data

• Proposed BMP: North Hills Vegetated Swales with Subsurface Infiltration

Detention Basins	Constructed Wetlands
Detention basin volume (m ³) 41276	Total area urban land (Ha) 2444
Basin dead storage (m ³)	Fraction of area treated (0-1) 0.000
Basin surface area (m ²) 41276	
Basin days to drain 3	Street Sweeping
Basin cleaning month	Times/month Times/month January 0 July 1
Stream Protection	February 0 August 1
Vegetative buffer strip width (m) 15.24	March 0 September 1 April 1 October 1
Fraction of streams treated (0-1) 0.000	May 1 November 0
Total streams in non-ag areas 62.2	June 1 December 0
Streams w/bank stabilization (km) 0.0	Impervious Surface Reduction
	Red %Area %Red %Area
Infiltration/Bioretention	LD Mixed 0 0 LD Residential 0 0
Amount of runoff retention (cm) 3.175	MD Mixed 0 0 MD Residential 0 0
Fraction of area treated (0-1) 0.026	HD Mixed 0 0 HD Residential 0 0
CSN Tool Data	
Pollutant L	Load Reduced Development Type*
Storm Event Simulated (cm) 0.0 TSS (kg)	0.0 C LD Residential C LD Mixed
Area Simulated (Ha) 0 TN (kg)	0.0 C MD Residential C MD Mixed
Selected Dev Type Area (Ha) 0 TP (kg)	0.0 C HD Residential C HD Mixed * if no residential area, use "Mixed" type

Sediment Load for Brandywine Creek Watershed w/ BMPs - Iterative Calculation - Result

- Brandywine Creek Watershed Sediment Load w/ Street sweeping, Retrofits 4, 5,6,7, and Vegetated Swale 1 & North Hills Vegetated Swale Project = 3,963 ton/yr
- Reduction = 3,981 ton/yr 3,963 lb/yr = 18 ton/yr

GWLF-E Loads for file: BrandywineBioswale2-0

	T	ons		Nutrient Lo	ads (Pounds)	
Month	Erosion	Sediment	Dissolved N	Total N	Dissolved P	Total P
Jan	584.5	218.0	10611.9	11900.1	253.4	456.3
Feb	826.6	214.2	10327.8	11330.3	215.0	385.7
Mar	678.4	245.4	12800.3	13384.2	226.0	382.3
Apr	1162.6	257.5	12481.9	12856.2	197.6	337.9
May	1874.7	286.5	9869.1	10276.6	151.6	299.9
Jun	1490.1	198.5	6557.9	6877.7	101.9	203.0
Jul	2455.9	324.2	3907.5	5098.8	89.8	309.6
Aug	1345.9	78.0	1176.3	1439.9	23.5	70.0
Sep	1337.1	478.2	1358.4	3247.4	69.2	403.2
Oct	620.9	268.9	2884.5	4204.5	82.4	292.4
Nov	917.0	547.9	4748.7	7362.5	144.4	571.6
Dec	3116.7	845.2	8907.8	12246.7	205.7	814.4
Totals	16410.4	3962.5	85632.0	100225.0	1760.6	4526.5

Period of analysis: 17 years from 1975 to 1991

Sediment Load for Brandywine Creek Watershed w/ BMPs – Iterative Calculation – Input Data

• Proposed BMP: Streambank Stabilization w/ Stream Calming Measures*, and Riparian Buffer Restoration

Detention Basins	Constructed Wetlands
Detention basin volume (m ³) 41276	Total area urban land (Ha) 2444
Basin dead storage (m ³)	Fraction of area treated (0-1) 0.000
Basin surface area (m ²) 41276	
Basin days to drain 3	Street Sweeping
Basin cleaning month	Times/month Times/month
Dasin cleaning month ju	January 0 July 1
Stream Protection	February 0 August 1
Vegetative buffer strip width (m) 15.	March 0 September 1
	April 1 October 1
Fraction of streams treated (0-1) 0.1	05 May 1 November 0
Total streams in non-ag areas	2 June 1 December 0
Streams w/bank stabilization (km) 6.5	Impervious Surface Reduction
	% Red % Area % Red % Ar
Infiltration/Bioretention	LD Mixed 0 0 LD Residential 0 0
Amount of runoff retention (cm)	175 MD Mixed 0 0 MD Residential 0 0
Fraction of area treated (0-1)	D262 HD Mixed 0 0 HD Residential 0 0
CSN Tool Data	
	Pollutant Load Reduced Development Type*
Storm Event Simulated (cm) 0.0	TSS (kg) 0.0 C LD Residential C LD Mixed
Area Simulated (Ha)	TN (kg) 0.0 C MD Residential C MD Mixed
Selected Dev Type Area (Ha) 🚺	TP (kg) 0.0 C HD Residential C HD Mixed * if no residential area, use "Mixed" type

*Streamflow adjustment factor 0.95 used to reflect proposed stream calming measures, instream grade control measures, and floodplain reconnection in model due to lack of representative BMP input abilities in MapShed software.

Sediment Load for Brandywine Creek Watershed w/ BMPs - Iterative Calculation - Result

- Brandywine Creek Watershed Sediment Load w/ Street sweeping, Retrofits 4, 5,6,7, Vegetated Swale 1, North Hills Vegetated Swale Project, Streambank Stabilization w/ Stream Calming Measures, and Riparian Buffer Restoration = 3,752 ton/yr
- Reduction = 3,963 ton/yr 3,752 ton/yr = 211 ton/yr

GWLF-E Loads for file: BrandywineCreek_Streams-0

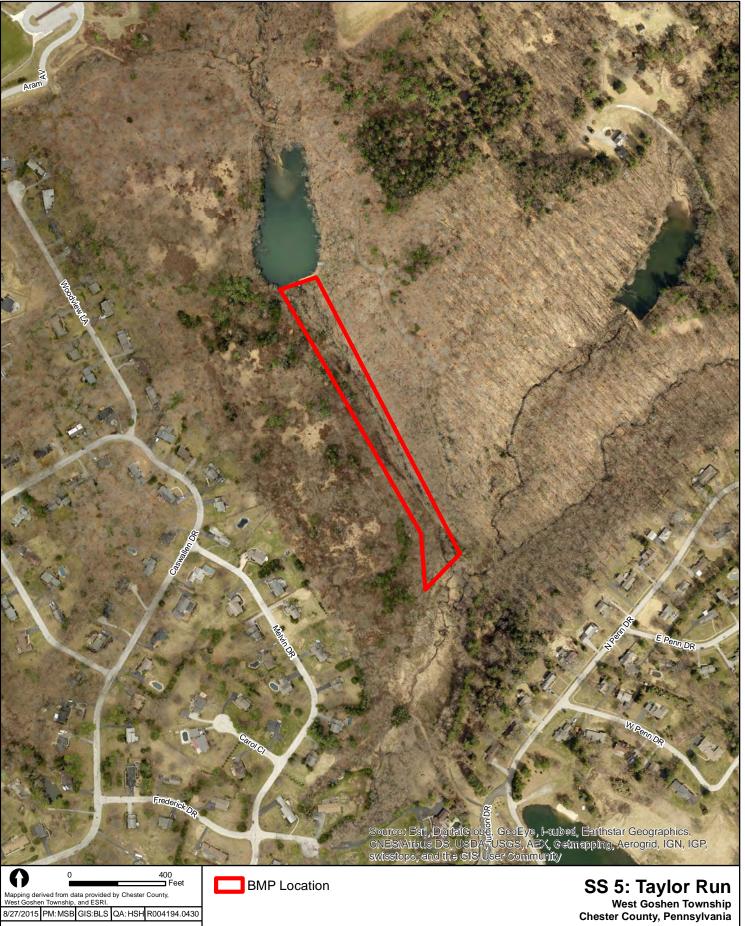
Month	Erosion	Sediment	Dissolved N	Total N	Dissolved P	Total P
Jan	564.4	193.8	10590.5	11804.6	250.8	442.3
Feb	763.4	189.0	10312.2	11251.6	212.9	373.2
Mar	685.4	218.6	12797.8	13339.8	224.9	372.0
Apr	1174.7	231.1	12485.8	12831.2	197.1	329.6
May	1894.1	264.1	9875.7	10267.0	151.5	294.3
Jun	1501.8	181.7	6560.8	6865.2	101.7	198.6
Jul	2481.3	312.5	3901.3	5069.9	89.0	305.6
Aug	1359.8	73.0	1174.2	1428.9	23.2	68.3
Sep	1350.9	471.1	1349.7	3221.3	68.5	401.4
Oct	627.3	259.2	2871.1	4157.0	80.9	287.1
Nov	920.3	533.3	4725.8	7284.0	141.9	563.1
Dec	3086.9	824.5	8890.5	12179.3	203.5	806.2
Totals	16410.4	3751.9	85535.5	99699.8	1746.0	4441.9

Period of analysis: 17 years from 1975 to 1991

Brandywine Creek Watershed w/ BMPs Modeling Results:

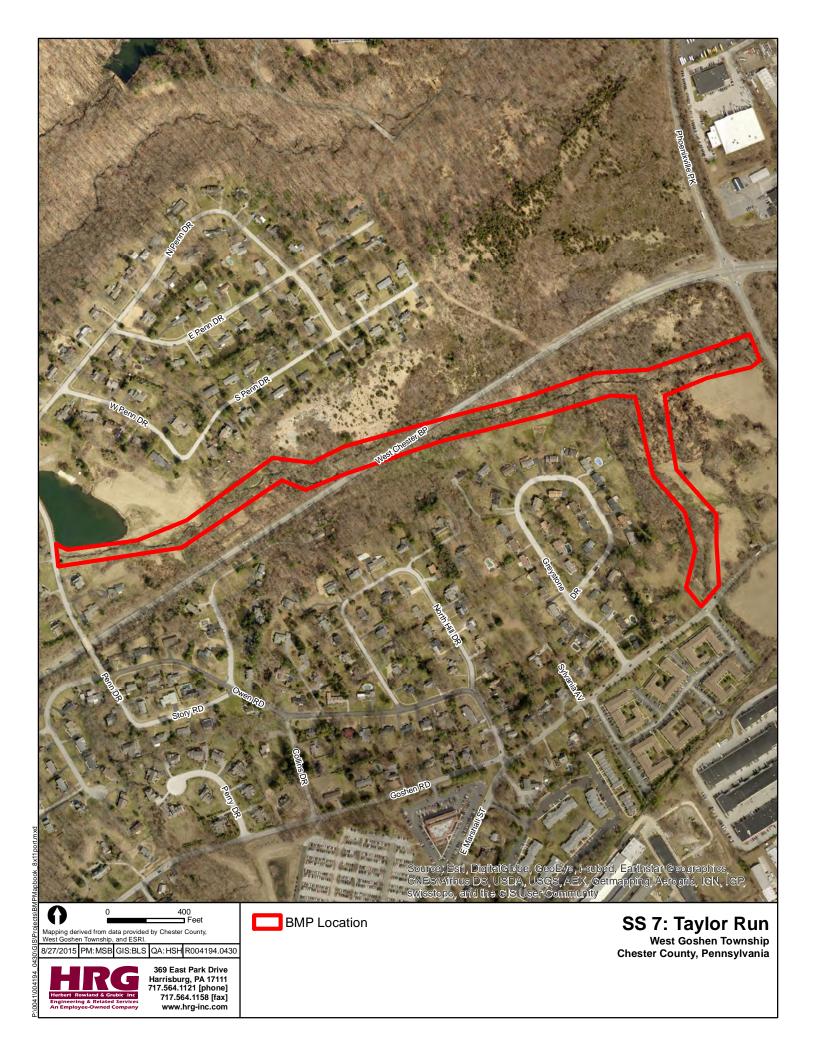
- Brandywine Creek Watershed Sediment Reduction = 4,038 ton/yr 3,752 ton/yr = 286 ton/yr
- <u>Proposed reduction = 286 ton/yr = Required reduction = 286 ton/yr = 61%</u>

MapShed Default BMP Load Reduction Efficiencies

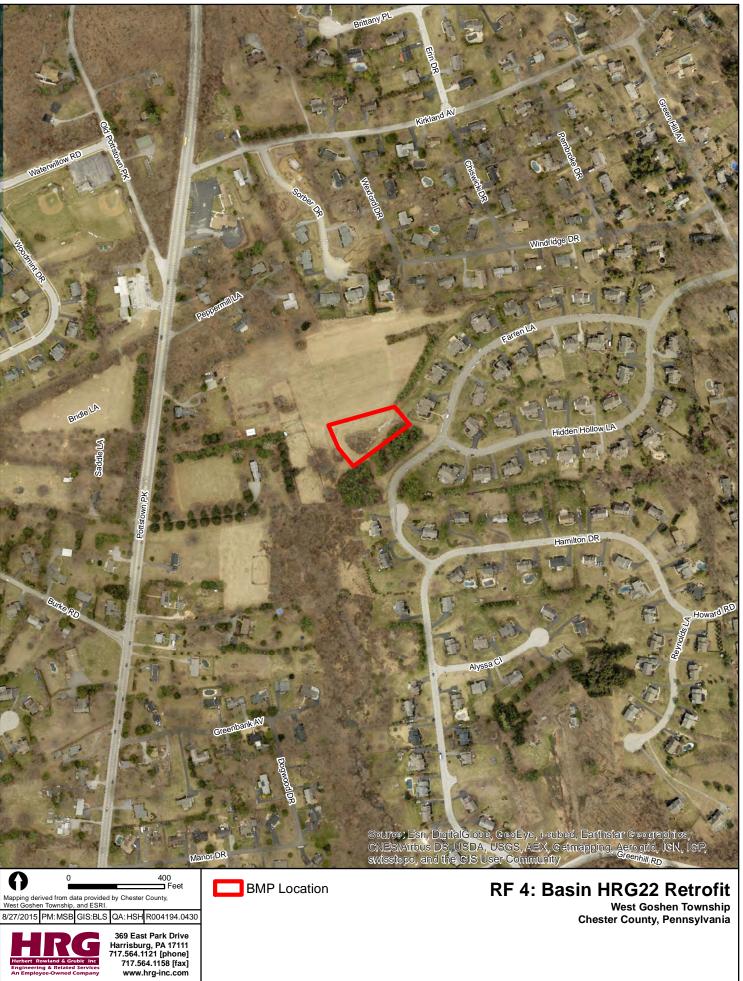

- Default pollutant load reduction efficiencies used in modeling of Brandywine Creek Watershed & West Goshen Township MS4 with the exception of the streamflow adjustment factor used to represent proposed stream calming measures.
- Default efficiencies assumed acceptable by PADEP

BMP Type	N	P	Sed	Path
BMP1	0.29	0.50	0.35	
BMP 2	0.08	0.22	0.30	
BMP 3	0.07	0.10	0.17	
BMP 4	0.05	0.10	0.16	
BMP 5	0.00	0.00	0.00	
BMP 6	0.29	0.44		
BMP 7	0.30	0.30	0.38	
BMP 8	0.95	0.95	0.95	
Vegetated Buffer Strips	0.41	0.40	0.53	0.70
Streambank Fencing	0.56	0.78	0.76	1.00
Streambank Stabilization	0.95	0.95	0.95	
Unpaved Road (Kg/meter)	0.02	0.0035	2.55	
AWMS (Livestack)	0.75	0.75		0.75
AWMS (Poultry)	0.14	0.14		0.14
Runoff Control	0.15	0.15		0.15
Phytase in Feed		0.21		
Urban BMP Load Red	luction I	Efficien	icy	
BMP Type	N	Р	Sed	Path
Constructed Wetlands	0.20	0.45	0.60	0.71
Bioretention Areas	0.28	0.44	0.63	0.82
Detention Basins	0.25	0.35	0.55	0.71
Urban BMP Editor	set Defaul		ort to JP	1

APPENDIX D


STREAM PROJECT LOCATION MAPS

369 East Park Drive Harrisburg, PA 17111 717.564.1121 [phone] 717.564.1158 [fax] www.hrg-inc.com

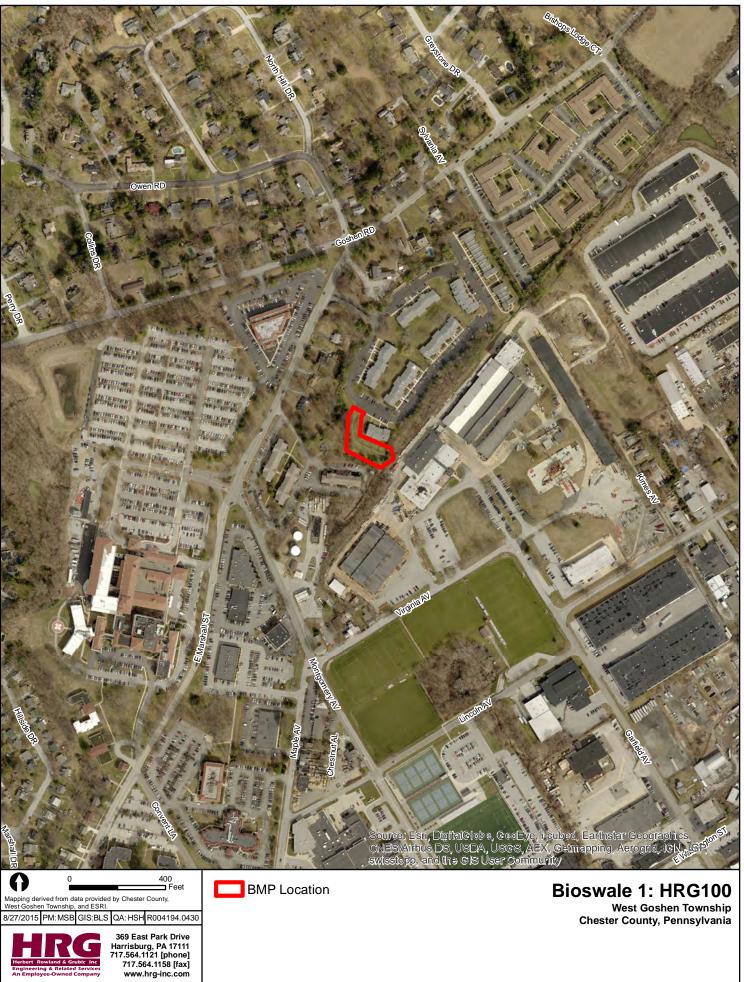


<u>APPENDIX E</u>

DETENTION BASIN RETROFIT LOCATION MAPS

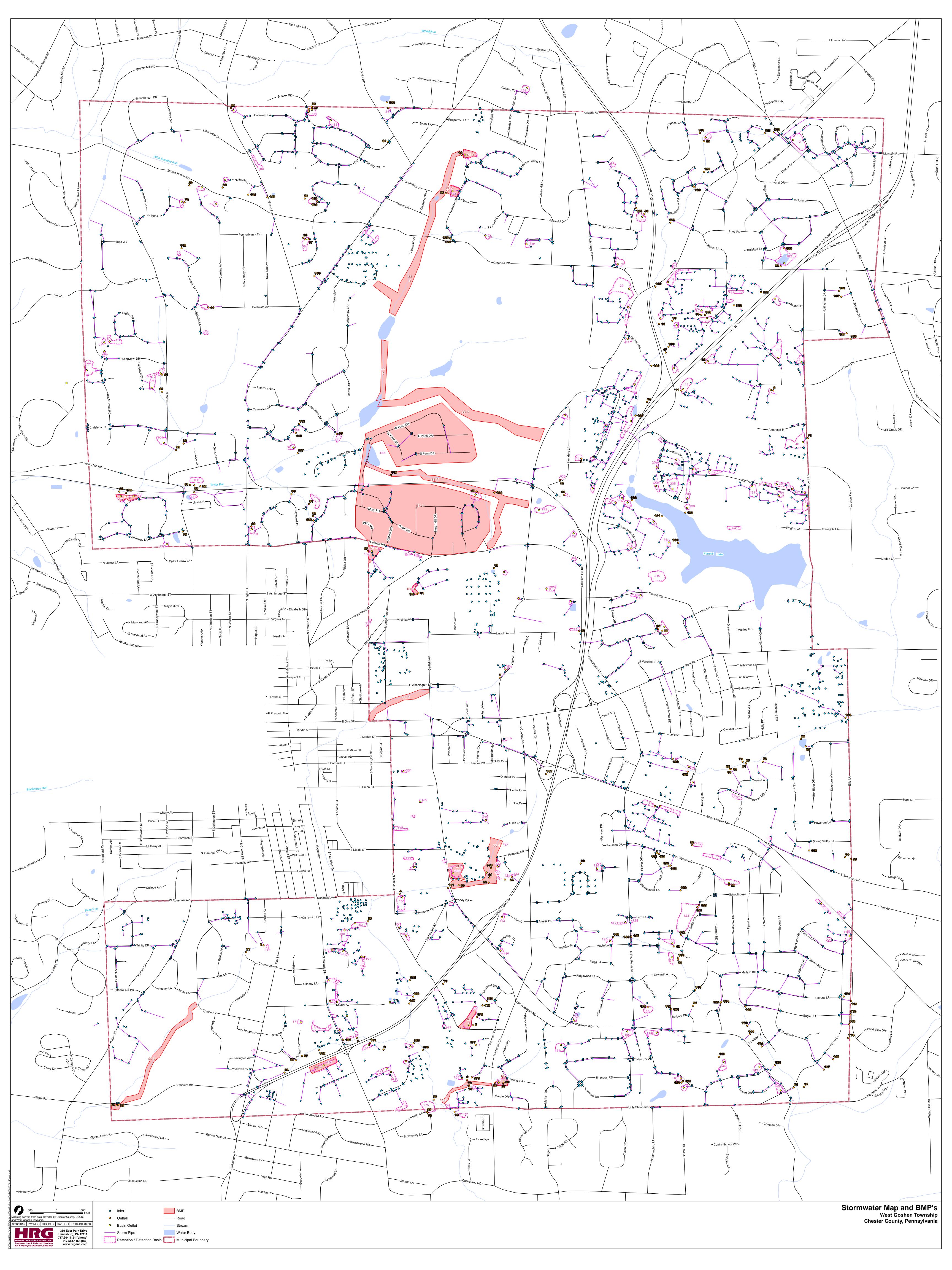
West Goshen Township

Chester County, Pennsylvania


PM:MSB GIS:BLS QA:HSH R004194.0430 8/27/2015

369 East Park Drive Harrisburg, PA 17111 717.564.1121 [phone] 717.564.1158 [fax] www.hrg-inc.com

APPENDIX F


BIOSWALE PROJECT LOCATION MAPS

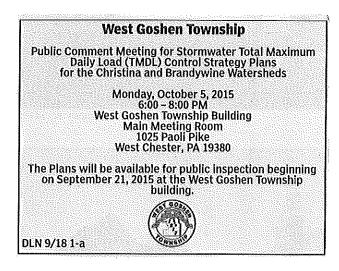
APPENDIX G

WEST GOSHEN TOWNSHIP MS4 STORMWATER FACILITY MAPS

APPENDIX H

PUBLIC COMMENT AND RESPONSE

Proof of Publication of Notice in the Daily Local News


State of Pennsylvania County of Montgomery

ss:

Maureen Schmid, Designated Agent, of the Daily Local News Company, a corporation, being duly affirmed, deposes and says that the *Daily Local News*, a newspaper of general circulation, published at 250 N. Bradford, Ave., West Chester, Chester County, Pennsylvania, was established November 19, 1872, and Incorporated December 11, 1911, since which date the *Daily Local News* has been regularly issued in Chester County, and that the printed notice or publication attached hereto is exactly the same as printed and published in the regular editions and issues of the said Daily Local News on the following dates viz:

September 18, 2015, A.D.

COPY OF NOTICE OR PUBLICATION

Affiant further deposes that he/she is the proper person duly authorized by the Daily Local News Company, a corporation, publishers of said *Daily Local News*, a daily newspaper, to verify the foregoing statement under oath, and that affiant is not interested in the subject matter of the aforesaid notice or advertisement, and that all allegations in the foregoing statements as to time, place and character of publication are true.

urees

Affirmed to and subscribed before me this

day of November 2015

Notary Public

COMMONWEALTH OF PENNSYLVANIA NOTARIAL SEAL ELEANOR B. REICHEL, Notary Public Lansdale Boro., Montgomery County My Commission Expires December 15, 2018

Greenly, Alex

From:	Rick Craig <rcraig@westgoshen.org></rcraig@westgoshen.org>
Sent:	Wednesday, October 28, 2015 8:05 AM
To:	Letavic, Erin; Greenly, Alex
Subject:	FW: TMDL comments
Attachments:	TMDL comments.pdf
Follow Up Flag:	Follow up
Flag Status:	Flagged

Erin and Alex, Attached are general comments received regarding the TMDL control strategies. Rick

Richard J. Craig, PE, CSM Township Engineer West GoshenTownship 1025 Paoli Pike West Chester, PA 19380 610-696-5266 x4122

From: Margie S [mailto:margies131@aol.com] Sent: Friday, October 23, 2015 8:23 AM To: Rick Craig Subject: TMDL comments

Dear Mr. Craig,

I don't need or request a response to the attached comments but I do hope you consider my positions in any revised TMDL plans and more importantly include the document in the file that is ultimately submitted to DEP for TMDL plan approval.

Thank you, Margie Swart Comments regarding:

Proposed Goose Creek and Christina Basin River TMDL Strategy For West Goshen Township

From: Margie Swart 1519 Links Drive West Goshen Township, PA Storm Water Advisory Action Committee

Comment 1

West Goshen Township should be re-designated as a **MS4 (non-TMDL) Municipality** per Pennsylvania Water Quality Protection law:

PA Code 96.3 (f) When the minimum flow of the stream segment is determined or estimated to be zero, applicable water quality criteria shall be achieved at least 99% of the time at the first *downstream point* where the stream is capable of supporting existing or designated uses. (TSF – Trout Stock Fishing)

PA Code 93.4 (2) Natural, ephemeral, intermittent or low flow conditions or water levels prevent the attainment of the use, unless these conditions may be compensated for by the discharge of sufficient volume of effluent discharges without violating State water conservation requirements to enable uses to be met.

PA Code 93.4 (5) Physical conditions related to the natural features of the water body, such as the lack of a proper substrate, cover flow, depth, pools, riffles, and the like, unrelated to water quality, preclude attainment of aquatic life uses.

Comment 2 - Clean Water Rule exclusion

The plan includes Detention Basin Retro-fits on private property. Constructed components do not fall under the jurisdiction of the EPA/DEP. Therefore, mapping of them and plans to retrofit them have no place in TMDL plans. My tax dollars or Township proposed storm water fees should never be spent on improving another citizen's private property. Private property rights are interfered with in these plans.

Comment 3

The stream enhancement project proposals cannot / should not be included in the TMDL plans. Stream segment 8 in the Christina Basin TMDL is located in the Robert B. Gordon Natural Area for Environmental Studies at West Chester University. Preservation of this site prohibits any disturbance. Additionally, all other proposed stream enhancement projects are on low flow, intermittent (mostly privately owned) streams that have little or no stream bank to support such disturbance. Again, these TMDL plans violate and interfere with private property rights!

Furthermore, the streams have plentiful tree canopy and sufficient stream buffer protection along with healthy, native plants in the riparian buffer area.

Comment 4

Penn DOT maintains approximately 30% of Township roads and there are at least 15 privately owned roads that will not receive street sweeping services if implemented.

Many of our Township roads are with out curbs and would not benefit from street sweeping services.

The benefit, if any, from street sweeping would need to be calculated by using curb mile figures in each watershed, not total miles in the township since only a small percentage of our roads would be swept.

PADEP's website (Model TMDL Template) does not include street sweeping as a cost effective Best Management Practice (BMP). The proposed monthly schedule will have little to no effect on the reduction of Sediment and Total Phosphorus in the Goose Creek and Christina Basin Watershed.

Comment 5

Christina TMDL Implementation Partnership (CTIP) Planning Team, Municipal Partners and CTIP Watershed Stakeholders had zero input into the proposed TMDL strategy. In fact, Chester County Water Resources Authority was unaware proposed TMDL plan included projects on County property.

Chester County Conservation District (CCCD) is responsible for meeting requirements #4 and #5 (Construction Site Runoff Control and Post-Constructions Storm Water Management in New Development and Redevelopment) of the Townships MS4 permit but was not a party to the development of the plan.

Even though West Goshen Township has 5 appointed Storm Water Authority Board members and a Storm Water Advisory Action Committee, (both formed in January 2015) input in developing the TMDL plans was limited to Township staff and a consulting firm.

Comment 6

An MS4 permit without a TMDL could include cost effective, efficient Best Management practices such as:

Eliminating proposed plans that infringe on private property rights. Replace with the following BMP's: (Best Management Practices)

2. Expanding Leaf Collection Dates in the fall from three to six times, starting in mid-October instead of mid November.

3. Instead of the costly and questionable benefits of a street sweeping program, implement a Catch Basin and Storm Drain System Cleaning Inspection program. Components to be checked (cleaned and repaired as needed) Include: Catch Basin Drop Inlets, Storm Manholes, Storm Sewer Piping, Ditches, Road side/Cross Culverts, Sediment Basins and Outfalls.

4. Enacting an Ordinance for On Lot Disposal Systems. (OLDS) Require residents to provide a proof of pump out receipt at least once every 3 years.

5. Developing a program that requires the owners of the nearly 200 privately owned Storm Water Basin systems in the Township to submit an annual Dry Detention Storm water Basin Checklist Inspection Form. Examples can be found with a simple Internet search.

I respectfully request West Goshen Township extend comment period for at least 30 more days to ensure the Board of Supervisors have sufficient time to explore my comments and memorialize, by way of resolution, that they support the final version of the TMDL plans submitted to DEP.

Greenly, Alex

From: Sent: To: Subject: Letavic, Erin Tuesday, December 01, 2015 9:38 AM Greenly, Alex FW: TMDL comments / Christina River Basin

FYI

Erin G. Letavic Herbert, Rowland & Grubic, Inc.

From: Rick Craig [mailto:RCraig@westgoshen.org]
Sent: Monday, November 30, 2015 1:34 PM
To: Margie S <margies131@aol.com>
Cc: Casey LaLonde <clalonde@westgoshen.org>; Derek Davis <ddavis@westgoshen.org>; Ray Halvorsen
<RHalvorsen@westgoshen.org>; Letavic, Erin <eletavic@hrg-inc.com>; Kristin Camp <kcamp@buckleyllp.com>
Subject: RE: TMDL comments / Christina River Basin

Ms. Swart,

The following are responses to your comments on the West Goshen Township TMDL strategy for the Christina River Basin:

- Taylor Run is part of the Christina River Basin and Taylor Run itself is listed as impaired on the PADEP 2014 Pennsylvania Integrated Water Quality Monitoring and Assessment Report – Streams, Category 4a, Waterbodies, Approved TMDLs. It was listed as impaired for siltation in 1998 and the TMDL date is 2006. See pages 62 and 63 of 500 of the report.
- 2. The Township has not yet consulted with West Chester University or Brandywine Valley Association. We do currently have very good working relationships with both parties. The full text of the 2008 Restoration Plan for Plum Run Watershed states that "While restoration of the natural stream geometry and floodplain would be ideal, the location of athletic fields constrain the ability to work outside of the existing stream location." Our proposed restoration work is only within the existing stream location. Although final design of this work has not been completed, the proposed scope of work appears to be viable for this area. Restoration of this stream bank area can be done within the Gordon Natural Area provided that it is approved by the owner of the property.
- 3. The Township does have the ability to retrofit stormwater basins that are privately owned. Retrofitting of the basins provides a benefit to the public and will most likely be part of improvements mandated by DEP for attainment of our TMDL requirements. This matter has been discussed with our Solicitor and is legal with the consent of the property owner/s.
- 4. Same response as number three.
- 5. No appeal of the TMDL is possible. The appeal period is six years from the adoption of the TMDL. The TMDL was adopted on September 26, 2006. Therefore, the appeal period expired on September 26, 2012.

These responses will be included with the submission of our proposed TMDL Control Strategy to DEP which will occur within the next few weeks. Thank you for your comments regarding this matter.

Rick Craig

Richard J. Craig, PE, CSM Township Engineer West GoshenTownship 1025 Paoli Pike West Chester, PA 19380 610-696-5266 x4122

From: Margie S [mailto:margies131@aol.com] Sent: Wednesday, October 21, 2015 4:58 PM To: Rick Craig Subject: TMDL comments / Christina RIver Basin

Dear Mr. Craig,

These are my comments on the West Goshen TMDL for Christina River Basin for which I'd like answers to.

Christina Basin:

1. The <u>2014 Pennsylvania Integrated Water Quality Monitoring and Assessment Report</u> list includes the unnamed tributaries to Taylor Run and Taylor Run as *not impaired by a pollutant and not requiring a TMDL*. (page 109)

Why are these stream segments included in the strategy?

2. Stream Enhancement Project #8 is located in the Robert B. Gordon Nature Reserve. A Restoration Plan for Plum Rum Watershed was prepared for Brandywine Valley Association in February 2008. "*Restoration of this section of stream would be very difficult due to the location of existing athletic fields*" is a comment made regarding a short segment of the stream. Did the Township consult with Brandywine Valley Association or West Chester University before including this stream segment in the TMDL plan? Can a stream segment in the Reserve be disturbed due to its location in a Nature Reserve?

3. Does the Township have the legal right to retrofit storm water detention basins that are privately owned? Explain how tax revenues or storm water utility fees can be used for improvements on private property.

4. Same question and comment: Bioswales.

5. PA Code 93.4 (2), 93.4 (5), 96.3 (f) and the Section 305(b) report and 303(d) list of the Clean Water Act as referenced in the 2014 Pennsylvania Integrated Water Quality Monitoring and Assessment Report all support why the Township should seek relief from a TMDL for the Christina River Basin. Will West Goshen Township seek relief based on the information provided in my queries? If not, why?

Thank you, Margie Swart Comments and questions regarding Goose Creek to follow by October 23, 2015.